
Deep Learning for Face Verification

Thapanapong Rukkanchanunt
Department of Computer Science

U. of Illinois at Urbana-Champaign
Illinois, USA

rukkanc1@illinois.edu

Tom Paine
Department of Computer Science

U. of Illinois at Urbana-Champaign
Illinois, USA

paine1@illinois.edu

Abstract

Face recognition has been studied extensively
over the past decade. But much of that work
has been done with database created by re-
search labs under controlled conditions. Re-
cently large scale datasets collected from the
internet are used as more challenging bench-
marks for face recognition. As datasets in-
crease in difficulty, more complicated tech-
niques are required to achieve high accu-
racy for face recognition. Generally these
more complicated techniques share common
attributes: they use increasingly compli-
cated hand-crafted features, complicated ker-
nel methods that make use of many features,
make use of outside data, or some combina-
tion of the above. For this project, we will ap-
ply a technique called Deep Learning on face
recognition problem.

1 Introduction

Deep learning is a family of techniques that uses un-
supervised learning to initialize the weights of neu-
ral network [4]. In computer vision, the most suc-
cessful DL networks have utilized convolution or lo-
cally connected neural networks [6]. The choice of
unsupervised techniques may not be essential for the
method to work well. In fact recent work by Coates
et. al. [1], suggested many methods can be used with
great success, including GMM, K-means, Sparse
Coding, and RBMs. In these studies, the most im-
portant aspect of the networks were the number of
elements in the dictionaries learned by the unsuper-
vised methods. In fact, it showed single unsuper-
vised layers that were wide i.e. had dictionaries with

many elements (>1000), could outperform skinny
deep networks, which were in favor at the time [1].

Deep learning techniques recently attracted great
interest in the computer vision community. Most no-
tably when a large scale deep-learning algorithm de-
signed by Google achieved state-of-the-art accuracy
on the Image-Net challenge on a large cluster [5].
And more recently when a deep-learning algorithm
submitted by Geoffrey Hinton and colleges, outper-
formed the rest of the computer vision community
by 10% on the ECCV 2012 Pascal Challenge [8],
also based on Image-Net, this time on a network
trained with only two GPUs. Unlike most modern
techniques, deep-learning has worked very success-
fully applied directly to raw image pixels. The algo-
rithms can be interpreted as learning good features
for classification. Generally the learned features can
be used to train a linear SVM and achieve good clas-
sification results.

We have implemented the basic framework to
train a single-layer unsupervised network. The first
pass with no hyper-parameter tuning achieved an ac-
curacy of 68%. This is notably better than the eigen-
faces benchmark, and on par with an algorithm using
specialized kernels on raw pixels [7]. Our method
uses no outside training data. Of methods that fall
into this category, the best listed result on Labed
Faces in the Wild is 79%. Currently, on an 8 com-
puter cluster, the deep learning feature extraction al-
gorithm takes 27 hours to run.

For this project, we plan to implement these algo-
rithms and apply them to the face recognition prob-
lem. Some work has already been done in this area,
most notably by [3]. But their approach uses RBMs,



which are slower, and difficult to scale to many dic-
tionary elements. In fact, their paper does not report
the number of dictionary elements used. We hope
to achieve similar results using k-means to learn the
dictionary, and sparse coding to perform the encod-
ing, a technique suggested in [2]. Furthermore, we
employ several optimization technique to greatly re-
duce the computational time while maintaining the
same accuracy rate. This is due to the time constraint
for this project.

2 Face Recognition

2.1 Problem Statement

The problem that we are trying to solve is called face
recognition, one of classic computer vision prob-
lems. We are given a picture of a face, and we want
to decide which person from among a set of people
the picture represents, if any.

2.2 Motivation

Face recognition has many applications varying
from a typical security identification to face tagging
currently developed by Facebook and Google. In
fact, human’s brain spends time on object recogni-
tion more than logical thinking. In the past, many
studies focused on improving a technique on rec-
ognizing frontal aligned faces. However, this can-
not be applied in real world problem directly. Re-
cently, there are several face databases that use real
world images such as photographs or video record-
ing. In our project, we will use PubFig83 which is a
face database consisting of famous celebrities pho-
tographs. Most of faces is visible but the face itself is
not well aligned. This makes the recognition prob-
lem harder but at the same time, this will test the
robustness of the underlying algorithm.

3 Feature Extraction

Feature extraction is composed of two parts. The
first part is learning dictionary while the second part
is encoding. This is the first layer of deep learning.

3.1 K-Mean Clustering

K-Mean clustering partitions the data into k clusters
in which each point lies on the cluster with the near-
est mean. The algorithm is iterative. For each itera-
tion, assign each point to the nearest cluster and re-

computing the mean of the each cluster based on the
new assignment. The distance function used in our
project is euclidean distance. This algorithm con-
verges when the assignment does not change. How-
ever, it may take a long time to converge so we set
the upper bound of the iteration to 400 iterations.

3.2 Dictionary

A dictionary is essentially a collection of filters. In-
stead of providing pre-defined filters, we will learn
the filters from the data. The algorithm is as follow:

ComputeDictionary
1. Apply local contrast normalization (LCN)

to each image
2. Extract p random sample patches
3. Perform whitening on each sample patch
4. Use K-mean to obtain q mean patches

There are two hyperparameters that we can play
with. Initially, we set p small (400,000) to reduce the
computational time. However, we increase the value
to 1,000,000 due to GPU speed-up. For the param-
eter q, we would like to have as many as different
mean patches so we settle for a moderate number
which is 1,600. In fact, any value above 1,000 will
give us wide range of filters. (Recall that we are
dealing with color images so the number of different
color filters will be much more higher than the gray-
scaled counterpart.) Figure 1 shows the computed
dictionary of 1,600 patches.

3.3 Encoding

All encoding methods take as input a three channel
(i.e., RGB) image, and a dictionary of filters. The
output is vector of pooled activities. The computa-
tional steps are outlined in Figure 2.

We tried many variations of this general out-
line, specifically we tried with and without Lo-
cal Contrast Normalization (LCN); three different
‘sparse filtering’ techniques: CPU-based sparse cod-
ing, CPU-based convolution, and GPU-based con-
volution; and two pooling techniques: mean pool-
ing, and max pooling.

LCN is a local operation. For each pixel the mean
and standard deviation of the pixels neighborhood
is calculated and used to normalize that pixel value.
The resulting images looks like a high-pass filtered
version of the original color image.



Figure 1: A Dictionary

Figure 2: Encoding process

Each filtering operation takes as input a three
channel image, and gives as output another multi-
channel image, where each channel corresponds to
the filtering operation from one filter in the dictio-
nary. So if the original image is N ×N × 3, and we
learn a dictionary with K, M × M × 3 filters, the
output is of size (N −M +1)× (N −M +1)×K.

In CPU-based sparse coding, for each image, we
gather all non-overlapping M × M patches in the
image (there are (N − M + 1) × (N − M + 1)
of them), and use a sparse coding algorithm to find
the sparse code which minimizes reconstruction er-
ror giving the dictionary of filters, each patch re-
sults in a sparse code vector of size K (giving our
(N −M + 1)× (N −M + 1)×K output). While
this process is relatively fast, it took about 1 second
per image with our hardware. For a database with
13,838 images it would take 9.6 days on a single
machine. We ran this version of the code once on
an 8 computer cluster and it took 27 hours. With-

out fine-tuning it did not produce very good results
(about 68% accuracy on LFW).

In CPU-based convolution the operation is much
simpler. We simply convolve the image with each
filter, and threshold the result. Filtering RGB im-
ages with RGB images may require further expla-
nation: we convolved each channel of the image,
with each channel of a filter, and summed up the
result. This is equivalent to using the convn oper-
ation in MATLAB, which for the CPU, was slower
than looping over each channel, and using conv2. In
our experiments a single global threshold value was
used, which we tuned as a hyper parameter. Running
this version took 12 hours for all 13,838 images.

In GPU-based convolution, the same operation is
being performed, but we experimented with many
ways to speed up the operation instead of looping
over channels, filters, and images. We describe our
fastest method here. GPUs perform best when max-
imizing the computations performed while minimiz-
ing the data sent, and especially data received from
the GPU. In our method we only loop over the fil-
ters; channels and images are handled by using the
convn function in MATLAB. For a single M×M×3
filter, we convolve it with a stack of 2500 images re-
shaped to size N×N×(3×2500). The output is size
(N −M +1)× (N −M +1)× (3× 2500− 3+1).
If we drop every third frame, this is equivalent to
looping over channels and images, but on a GPU,
is much faster. Also, to minimize the data recieved
from the GPU, we perform the pooling step, reduc-
ing the size of the data, before pulling it back to the
CPU. Running this version takes 25 minutes for all
13,838 images.

Pooling is necessary to reduce the dimentionality
of the output (N − M + 1) × (N − M + 1) × K
is generally too big to give to a classification algo-
rithm. Pooling also has other benefits including al-
lowing features to be translation invariant. In pool-
ing we simply perform an operation over local re-
gions of each channel. Here we pool over the whole
image, resulting in a vector of size K, and pool over
each quadrant of the image resulting in a vector of
size 4×K, we concatenate both of these vectors to
create a final feature vector of size 5×K.



3.4 Learning Classifier

We use LIBSVM classifier coded in MATLAB for
when the number of training samples and number of
classes are small, and LIBLINEAR, when the num-
ber of training samples and number of classes are
high. Specifically we found using LIBLINEAR for
the 83 class recognition problem with its large num-
ber of training samples did not perform well.

4 Results

4.1 Data

We use the face database called PubFig83. The
database contains 13,838 images of 83 individuals.
Each individual does have an equal number of im-
ages. The image may have out-of-plane as well as
in-plane rotation. The alignment is not perfect but
the majority of the face area is visible. Small occlu-
sion and sunglasses may be included. We split the
data into training set (80%) and testing set (20%).
Figure 3 shows a sample of the database. You can
see a wide variety of poses and face angles. Figure
4 shows the average face of 9 subjects. Some of the
mean faces are barely recognizible.

Figure 3: PubFig83 Sample Images (4 Subjects)

4.2 Accuracy

We compare the accuracy of our approach to the
typical PCA approach which is a decent baseline to
beat. We have 3 steps testing procedure. We first
test our method on 2 subjects (211 total images) and
move onto 10 subjects (approximately 500 images).
Because learning on 83 subjects test (full database)

Figure 4: Mean Faces of 9 Subjects

takes a long time, we often run the first two steps
of testing when we try different modification to the
algorithm. We will call our method K-Mean Convo-
lution (KMC). Initially, we did not apply LCN in the
encoding process but the result is on par with PCA.
After incorperating LCN, we boost our accuracy by
13% in 10 subjects test. We experiment further as
we would like to achieve high 80% for 10 subject
tests. We switch our pooling from mean to max. The
accuracy greatly increases. The result is show in Ta-
ble 1. For the KMC + LCN with Max Pooling on
83 subjects test, we initially get 17% accuracy rate
when using LibSVM. We inspect this behavior fur-
ther by testing on 20 subjects and 40 subjects. The
confusion matrices are showed in Figure 5 and Fig-
ure 6. Both tests give us high 90% accuracy rate but
they do not explain the result on 83 subjects. We
change the classifier from LIBSVM to LIBLINEAR
and the result is more reasonable. (97%)

5 Conclusion

We implement a single layer “Deep” Network. We
also reduce the computational time from 9 days to
12 hours and 25 minutes (using GPU) for encod-
ing 13,838 images. The slow process becomes the
learning part which we have a little control over it
as we use external classifier package. We have not
inspected carefully why LIBSVM and LIBLINEAR
produce such a large gap in accuracy rate on 83 sub-
jects test. It is hypothesized that LIBSVM may suf-
fer from precision error.



Method
Accuracy Accuracy Accuracy

(2 Subjects) (10 Subjects) (83 Subjects)
PCA 81% 43% 22%
KMC 80% 51% 17%

KMC + LCN 64%
KMC + LCN with Max Pooling 98% 17% (97%)

Table 1: Accuracy rate for PCA, K-Mean convolution (KMC) and its variants.

Figure 5: A Confusion Matrices of 20 Subjects Test

Figure 6: A Confusion Matrices of 40 Subjects Test

References

[1] Coates, A., Lee, H., & Ng, A. Y. (2010). An
analysis of single-layer networks in unsuper-
vised feature learning. Ann Arbor, 1001, 48109.

[2] Coates, A., & Ng, A. Y. (2011). The importance
of encoding versus training with sparse coding
and vector quantization. International Confer-
ence on Machine Learning, 8, 10.

[3] Huang, G. B., Lee, H., & Learned-Miller,
E. (2012). Learning hierarchical representations
for face verification with convolutional deep be-
lief networks, 25182525.

[4] Hinton, G. E. (2006). Reducing Di-
mensionality of Data with Neural Net-
works. Science, 313(5786), 502504.
doi:10.1126/science.1129198

[5] Le, Q. V., Monga, R., Devin, M., Corrado,
G., Chen, K., Ranzato, M. A., Dean, J., et
al. (2011). Building high-level features using
large scale unsupervised learning. Arxiv preprint
arXiv:1112.6209.

[6] Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y.
(2009). Convolutional deep belief networks for
scalable unsupervised learning of hierarchical
representations. Proceedings of the 26th Annual
International Conference on Machine Learning,
609616.

[7] Nicolas Pinto, James J. DiCarlo, and David D.
Cox. (2009). How far can you get with a mod-
ern face recognition test set using only simple
features? Computer Vision and Pattern Recog-
nition.

[8] http://www.image-
net.org/challenges/LSVRC/2012/results.html


